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Abstract 1. Introduction 

The scattering from crystals has two components, Bragg 
and diffuse. In the case of disordered crystalline 
materials, or those at high temperature, the latter 
contribution is considerable and contains a great deal 
of information about any static or thermal disorder in the 
system. However, interpretation of this diffuse scattering 
is in general difficult. A new and widely applicable 
technique for modelling single-crystal diffuse scattering 
has been developed, which is most useful for the study of 
disordered crystalline materials. The algorithm, based on 
the reverse Monte Carlo method, is described in detail, 
and the information that can be obtained using it is 
discussed with reference to a study on ice lh. 
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The reverse Monte Carlo (RMC) modelling technique, 
first developed by McGreevy & Pusztai (1988), enables 
detailed short-range structural information to be obtained 
from neutron, X-ray and extended X-ray absorption fine 
structure (EXAFS) measurements (McGreevy & Howe, 
1992). A wide variety of different systems has been 
studied, as diverse as expanded caesium near the critical 
point (Nield, Howe & McGreevy, 1991) and disordered 
crystalline solids (Nield, Keen, Hayes & McGreevy, 
1992, 1993). The latter group of materials was studied 
using powder neutron diffraction. There are many 
recently developed techniques for producing models of 
crystalline materials, including refinement using simu- 
lated annealing in conjunction with both molecular 
dynamics (Brtinger, Kuriyan & Karplus, 1987) and 
Monte Carlo methods (Newsam, Deem & Freeman, 
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1992). Some of these methods refine the model to agree 
not only with Bragg intensities but also with additional 
information such as the 'ideal' bond lengths and angles 
(Wlodawer & Hendrickson, 1982). When applied to 
powder diffraction data from disordered crystalline 
materials, the RMC method can be thought of as a 
refinement technique that models the total scattering, 
both Bragg and diffuse. The diffuse scattering arises in 
two ways, from thermal effects - atomic or molecular 
vibrations, rotations and translations - and from inherent 
static disorder. 

The present paper discusses the extension of the RMC 
technique to the analysis of neutron single-crystal diffuse 
scattering (further generalization to include X-ray single- 
crystal diffuse scattering is trivial). Details of the 
algorithm are given, together with a comprehensive 
account of the advantages and limitations of the 
technique. In this context, the type of information that 
can be obtained from the RMC method results is 
considered. Single-crystal data from D20 ice lh at 
20K, measured on SXD at ISIS (Li et al., 1994), is 
used to illustrate the technique throughout. A full report 
on the structure of ice lh is contained in a separate paper 
(Nield & Whitworth, 1995), which will include a more 
critical discussion of the results obtained than is 
appropriate here. 

2. The single-crystal reverse Monte Carlo technique 
(RMCX) 

RMC is similar to the Metropolis Monte Carlo technique 
(Metropolis, Rosenbluth, Rosenbluth, Teller & Teller, 
1953) except that one moves atoms to minimize the 
difference between the measured and calculated structure 
factors, rather than to minimize the energy of the 
configuration of particles. No potential function has to 
be assumed and so the technique is in principle readily 
applicable to a wide variety of materials. The algorithm is 
relatively simple, aiding the use of this method and 
allowing it to be easily modified. 

For single-crystal data, the algorithm is based on the 
definition of the neutron scattering cross section in the 
static approximation, which gives 

N 

S(Q) = ( l /N)  ~ ( ~ e x p [ + i Q .  r , (0)]~ 
l,k=l 

x exp [ - i Q .  rt,(0)]), (1) 

where b t, bk are the scattering lengths for atoms l and k, 
rt(0 ) and rk(0 ) are their positions at t = 0 and (...) 
denotes an expectation value averaged over all the initial 
states of the crystal. N is the number of atoms in the 
material. Note that the above expression involves an 
integral over all energies and hence RMCX is used to 
model total scattering, rather than elastic scattering 
(Lovesey, 1984, has a more detailed discussion). The 

expression gives a t = 0 instantaneous picture, or 'snap- 
shot', of the whole structure. 

To perform any calculations using (I), a configuration 
of atoms is necessary. In the initial configuration, the 
atoms are arranged with the correct crystal symmetry, 
and any information that has been positively determined 
about their positions in the unit cell is used. Thus, the 
atoms are normally placed at the time-average sites as 
obtained from refinement of Bragg intensities. Periodic 
boundary conditions are applied, requiting an integral 
number of unit cells in all three directions. (This 
configuration is known by some authors as a supercen.) 

The boundary conditions mean that the configuration 
is surrounded by images of itself, and the contribution 
from any atom and its image must be the same. Hence, 
S(Q) can only be calculated at Q points which satisfy 

Q = 2rr(h~/ana, k'/bn b, l'/cnc), (2) 

for lattice parameters a, b, c and a configuration box with 
na, nb, n c unit cells in the three directions, h', k', l' are 
integers. This means that S(Q) can only be calculated on 
a grid of points in reciprocal-lattice space, with the 
positions of the points dependent on the number of unit 
cells. (In terms of the supercell, this expression 
is readily seen to give the intensity of the Bragg peaks of 
the supercell.) The coherent part of S(Q), denoted by 
F(Q), then simplifies to 

F(Q) = (1/27rN') . exp(iQ. R/) , (3) 

where the sum is over all N' particles within the 
configuration box. 

The aim of the RMCX is to use (3) to find a 
configuration of atoms that agrees well with the 
experimental data. The algorithm is detailed below. 

(1) Produce the initial configuration; routinely these 
contain between 4000 and 40 000 particles, arranged in 
the known crystal structure as discussed above. The size 
of the configuration must be compatible with the spacing 
of the data points [see equation (2)]. 

(2) Calculate the coherent scattering of the starting 
configuration using equation (3). 

(3) Choose a particle at random and move it a random 
amount, up to a user-specified maximum, in a random 
direction. The maximum move size obviously influences 
how quickly phase space is sampled but also affects the 
number of moves accepted and therefore the rate of 
convergence. 

(4) The particle-particle distances are checked and if 
any particles are unphysically close the move is rejected 
and step 3 is repeated. This prevents any two atoms from 
being too close to one another. The closest approach 
values are specified by the user but erroneously large 
values can easily be noticed if the partial radial 
distribution functions are calculated once a fit to the 
data has been achieved. Sharp spikes in the first peaks of 
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the partial radial distribution functions, sometimes with 
corresponding troughs elsewhere, indicate that a change 
in the closest-approach values is required. Additional 
constraints can readily be incorporated at this stage; for 
instance, in a molecular system the intramolecular 
distances can be kept within a specified range. 

(5) Equation (3) is used to recalculate the coherent 
scattering for comparison with the data. In practice, this 
step is made faster by calculating the contribution due to 
the moved particle both before and after its move, and 
taking the difference. 

The goodness-of-fit parameter, X 2, is defined by 

nE 
X 2 : ~ [FE(Qm ) -- Fc(Qm)]2/cr2E, (4) 

m=l 

where the sum is over all n e data points at positions Qm. 
Fe(Qm) is the value of the experimental data for point m 
and Fc(Qm) its calculated counterpart (the incoherent 
scattering is assumed to have a constant fiat level and is 
subtracted from the experimental data before X 2 is 
calculated). The standard deviation cre is taken to be 
independent of Q and is treated as a parameter of the 
modelling. 

The change in X 2 resulting from the move is 
AX2 2 2 --" X n e w -  Xold" I f  (a) A X 2 < 0 the  fit  to the data  
has improved and the move is accepted, (b) AX2 > 0 the 
fit to the data has  worsened and the move is accepted 
with probability exp(--Ax2/2). 

In the study discussed in this paper, cr e was taken as 
0.01. If extreme values are used, this will obviously 
affect the calculations significantly. With a very large 
value of cr e, the data are ignored (X 2 is always _~ 0, and 
so all moves are accepted); with a very small value, the 
configuration is driven to the local minimum closest to 
the starting point (there is a negligible probability of 
moves that make the fit worse being accepted). 

(6) The procedure is repeated from step 3 until X 2 has 
converged. In practice, for the study on ice it was found 
that complete convergence took too long and so the 
fitting was stopped once the rate of convergence was 
deemed to have become too slow. 

As many reciprocal-lattice planes of data as have been 
measured can be used simultaneously in the fitting 
procedure. The point group is supplied by the user and 
the algorithm automatically calculates the scattering over 
the symmetry-related directions and averages them. In 
the main study considered here, Bragg scattering was not 
fitted but, as indicated in the Appendix, preliminary 
attempts to model Bragg and diffuse scattering together 
are under way. 

2.1. Information obtainable 

Most methods of obtaining information from crystal- 
line materials analyse only the Bragg scattering. This 
contains information on the average structure and hence 
can be used to determine average sites for all the atoms in 

the material. Anharmonic or anisotropic thermal param- 
eters, or partially occupied 'defect' sites, are used to 
describe the deviations from the average sites. With the 
RMCX, a configuration of atoms is obtained that is a 
representation of the instantaneous structure of the real 
crystal. From this configuration, it is possible to 
determine many features of the material under study. In 
practice, several independent configurations are collected 
and the results averaged over them all in order to 
improve statistics. 

By using the translation vectors of the unit cell, all of 
the unit cells of the independent configurations can be 
superimposed onto one. All local information is lost, but 
the average atom density can be examined, and proper- 
ties of the spatial average structure can be obtained. For 
example, the mean site positions, and mean square 
displacements in general directions, can be calculated. 

Actual atomic separations and the corresponding 
bond-angle distributions can be calculated directly from 
the configurations themselves. The values obtained in 
this case are not necessarily the same as the distances and 
angles calculated from the mean site positions and 
comparison can give useful information on local 
disorder. Diffuse scattering contains information on 
correlated displacements, and the configuration can 
readily be probed to explore these. Other useful 
obtainable information will differ from system to system. 
For example, in ice the dependence of the displacements 
of the O atoms on the positions of the neighbouring 
deuterons was examined. It was also interesting to look at 
the range of molecular geometries present. 

Unless tr e is chosen to drive the configuration into a 
local minimum close to the starting point, the RMCX 
model is one of the most disordered that is consistent 
with the data. It is therefore likely that any correlations in 
the model are present in the real material (correlations are 
not formed by a random increase in disorder), possibly to 
an even greater degree. However, there may be additional 
correlations in the real system that are not present in the 
model, since the data can be fitted without them. 

3. Experimental considerations 

The scattering in as large a region of reciprocal space as 
possible should be measured to make the obtained model 
as realistic as possible (this is discussed in some detail in 
§6). The main consideration is then the significant time 
required to make such measurements with good statistics 
for the inherently weak diffuse scattering. Convention- 
ally, single-crystal neutron disorder diffuse scattering 
studies have been made at reactor sources, where a 
monochromatic neutron beam is used, and point-wise 
surveys of reciprocal space are performed using triple- 
axis instruments to select elastic scattering. There is, in 
general, a significant limitation on the highest Q data 
accessible. For RMCX purposes, the grid of the 
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measurement fixes the configuration size except for 
cases where accurate interpolation of the data is possible. 

Time-of-flight (TOF) Laue diffraction as implemented 
on SXD at ISIS is more flexible and considerably faster. 
Neutrons of different wavelength (and hence velocity) 
arrive at the detector at different times. By measurement 
of the number of arrivals as a function of time, the 
intensity as a function of wavelength, and hence IQI, is 
obtained. SXD has a 64 × 64 pixel position-sensitive 
detector, enabling a large volume of reciprocal space to 
be surveyed for one sample position, even for samples 
which are not perfectly aligned. Continuous coverage of 
reciprocal space is achieved and so it is possible to bin 
the data to allow any reasonable-sized configuration to be 
chosen as the starting point for the RMCX. 

The scattering from either two-axis instruments or 
time-of-flight Laue diffractometers has to be accurately 
corrected and normalized. The methods of correction are 
very similar to those for treating the scattering from 
liquids and amorphous materials (Howe, McGreevy & 
Howells, 1989). Corrections are made for background 
and other non-sample scattering, absorption, multiple 
scattering and inelasticity. Vanadium scattering is used to 
normalize for the incident neutron flux profile (in the 
TOF case) and for the detector efficiency. The correc- 
tions for TOF data are the more difficult because most 
corrections are wavelength dependent. On the other 
hand, with diffraction data from a monochromatic source 
of wavelength 2, contamination by neutrons of wave- 
length 2/n, where n is an integer, is difficult to remove 
completely and can be a considerable nuisance. 

As discussed in the previous section, RMC-generated 
single-crystal patterns are calculated at discrete points in 
reciprocal space, determined by the size of the con- 
figuration used in the modelling. However, experimen- 
tally the data are an average over a region of Q space 
determined by the resolution of the instrument and any 
subsequent binning of the data (TOF case only). This 
difference between calculation and experiment is not 
believed to be too serious unless diffuse features that are 
much sharper than the data bin size are involved. In this 
case, the value of the binned data is unlikely to be close 
to the actual data value for the point at which the 
calculation is performed. A problem of more concern is 
correction of the data for the breakdown of the static 
approximation, which is difficult because although a 
Placzek correction can be applied to take care of the 
contribution due to the motion of single particles, it does 
not allow for the scattering from any of the collective 
modes in the sample, and is itself not accurate for 
samples of light atoms. 

4. Diffuse scattering from ice 

Ice lh, the normal form of ice, consists of a regular 
tetrahedral oxygen network with the H atoms arranged in 
a disordered manner whilst obeying the Bernal-Fowler 

rules (Bernal & Fowler, 1933). These state that there is 
one H atom between neighbouring O atoms and two H 
atoms near each O atom. The space group is P63/mmc. 
This arrangement was used as the starting point for the 
reverse Monte Carlo calculations discussed in the 
following section. 

The experimental data used in this study were obtained 
from a sample of deuterated ice lh at 20 K and measured 
on the SXD diffractometer, as discussed in detail in Li et 
al. (1994). Scattering from the three principal reciprocal- 
lattice planes was measured in the equatorial plane of the 
detector. In the eight-molecule orthorhombic cell (see 
§5), these correspond to: 

(1) (Okl), because of the hexagonal symmetry this 
plane is equivalent to (hhl); 

(2) (hOl), because of the hexagonal symmetry this 
plane is equivalent to (h,3h,l); 

(3) a segment of (hkO) corresponding to 30 ° of the 
basal plane (which is sufficient in hexagonal symmetry to 
map out the remainder of that plane). 

The data were corrected and normalized and the three 
planes are shown in Figs. 1-3, respectively. The 
underlying features, such as the hexagonal rings in the 
(hOl) and (hkO) planes, are due to disorder of the 
deuterons subject to the Bemal-Fowler rules. The 
strongest features that cannot be explained in this way 
are the streak along (60/), with its associated feature in 
the basal plane, and the strong scattering at high Q in the 
(Okl) plane [see Li et al. (1994), for a fuller discussion of 
the scattering predicted by the Bernal-Fowler rules]. 

5. Calculations 

While the unit cell of ice is hexagonal, it was decided for 
computational ease to perform the calculations using an 

12 

0 4 8 12 
0k0 

Fig. 1. Experimental neutron scattering pattern in the (Okl) plane from 
D20 ice Ih at 20 K. Darker shading corresponds to higher contour 
levels, which are equally spaced between 0.0 and 0.7 and are the 
same in Figs. 1-5. 
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eight-molecule orthorhombic cell, with the deuterons 
initially obeying the Bernal-Fowler rules. 6 x 6 x 6 unit 
cells were used (1728 molecules). The cell dimensions 
were taken from the work of R6ttger, Endriss, Ihringer, 
Doyle & Kuhs (1994) to be a = 4.498 and c = 7.323 A 
[and are the same in hexagonal and orthorhombic unit 
cells, with b = a  for the hexagonal cell and 
b = 2a sin(60) for the orthorhombic cell]. The oxygen 
network was initially tetrahedral. The starting positions 
of the D atoms were varied over a limited range and, 
within statistics, no differences were found in the final 
configurations. However, as yet, no comprehensive tests 
have been performed to discover quite how insensitive 
the modelling is to the starting point. 

For all models, the same closest-approach values were 
used. These were initially chosen as 2.5, 0.8 and 1.0~, 
for O - - O ,  O - - D  and D - - D ,  respectively, but on 
examination of the partial radial distribution functions 
these values were modified to 2.3, 0.5 and 1.0,~,. The 
small value of the O - - D  closest-approach distance is 
consistent with that obtained from a very careful Fourier 
transform of powder diffraction data (Floriano et al., 
1987). cr e was chosen as 0.01 in all cases. Modelling was 
stopped when convergence became so slow that several 
more days of CPU time would have been necessary for 
minimal changes in the results (all modelling was 
performed on a digital VAX4000/60 workstation). In 
each case, eight independent configurations were 
obtained. The results from each were in good agreement 
and so were averaged in order to improve statistics. 

By fitting to different numbers of planes and 
comparing the results obtained in each case it is possible 
to examine how many data are required to obtain a 
reasonable answer. Obviously, the more data used in the 
fitting procedure the more accurate the result is likely to 
be. The orthorhombic unit cell does not impose the 
required sixfold symmetry, and so calculating the 
scattering in planes that should be equivalent to ones 
used in modelling provides another test of how realistic 
the model is. 

For this reason, three different calculations were 
performed initially, whereby 

(a) only the (Ok~) data were used in the fitting (one- 
plane fit); this calculation required approximately 12h 
CPU time. 

(b) (Okl), (hO/) and (hkO) data were used simulta- 
neously in the fitting (three-plane fit); this calculation 
required approximately 30 h CPU time. 

(c) (Ok~), (hhl), (hOt), (h,3h,l) and (hkO) data were used 
simultaneously (five-plane fit); this calculation required 
approximately 36 h CPU time. 

The long CPU times are a result of the very large 
number of Q and r points; the algorithm has been 
optimized. A further calculation was performed which, 
instead of having an equal number of unit cells in each 
direction, used a configuration of close to equal length 
(in ,4,) in all directions (equal size fit). Hence, it had 

10 x 6 x 6 unit cells. The nature of the RMCX 
algorithm, as discussed in §2 and specifically equation 
(3), indicates that the number of unit cells present alters 
the required spacing in reciprocal-lattice units (r.l.u.) of 
the data. Hence, the number of data points for planes 
containing (h00) was larger in this case than previously. 
For different numbers of cells in the different directions, 
few reciprocal-lattice points in planes such as (hhl) and 
(h,3h, l) can be modelled, and so only three planes of data 
were used. The need for equal numbers of unit cells in all 
directions to fit all possible planes of data is a limitation 
of the technique that may be significant for some 
applications. 

The importance of measuring and modelling data to 
high and low Q was investigated in two further tests, 
where data in only a limited region of the (Okl) plane 
were used with RMCX. In the first, no data below 
IQ[ - (02 + Q2 + 02)1/2 = 8.0 r.l.u, were used (no low- 
Q fit). In the second, all points above IQI = 11.4 r.l.u. 
were ignored (no high-Q fit). In both of these limited 
data range fits, ca 1880 data points were used, compared 
with 2803 in the entire plane. The effect of changing the 
relative values of the c and a lattice parameters was also 
investigated. 

6. Discussion 

The first consideration when modelling data must always 
be whether there is sufficient data to produce a physically 
realistic model. As discussed in the previous section, 
three main calculations were performed, fitting to 
different numbers of planes of data, but identical in 
other respects. Fig. 4 shows the fit to the (hOl) plane from 
the five-plane fit, and comparison with Fig. 2 shows that 
it is in excellent agreement with the data. Similarly good 
fits were obtained in all cases, with agreement in the case 
of fewer planes of data being slightly better than for the 
five-plane fit, as would be expected. The slight under- 
lying modulation present in all the fits is a result of the 
finite configuration size of the model. 

Once the fitting was complete, the resultant con- 
figurations of atoms were used to predict the scattering 
for the other planes of data. The one-plane fit gave poor 
agreement for all other planes and did not pick up any of 
the strong features that were not a direct consequence of 
the Bernal-Fowler rules (these rules were built into the 
starting configuration). For example, neither the streak 
along (60/) in the (hOl) data [along (39/) in (h,3h,l)] nor 
the strong diffuse scattering at high Q in (hhl) were 
reproduced. The scattering calculated in this way for the 
(hOl) plane is shown in Fig. 5. The three-plane fit, as 
might be expected, gave better agreement for the other 
planes and reproduced the streak along (39l) in the 
(h,3h,l) data but again failed to give the high-Q scattering 
in (hhl). 

The streak along (60/) and (39/) is due to correlations 
in the direction of displacement of neighbouring 
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molecules. [More details can be found in Nield & 
Whitworth (1995).] These correlations were not picked 
up in the one-plane fit, as might be expected if the 
correlation results in little or no scattering in the (Okl) 
plane. In the three-plane fit, sufficient information about 
the correlation was present to reproduce the feature due 
to it in all planes. Hence, the more data used in the 

modelling, the more likely it is that insight is gained into 
correlated displacements. 

The next area for examination is how well the different 
models reproduce average features of the data. Mean 
square displacements along particular directions are 
given in Table 1. They were calculated by superimposing 
all unit cells onto one and considering the averaged atom 
density along a tube centred on the average lattice site 

0 

0 2 4 6 8 

hO0 

Fig. 2. Experimental neutron scattering pattern in the (h01) plane from 
0 2 0  ice lh at 20 K. 

12 

0 

o 2 4 6 8 
h00 

Fig. 4. RMCX five-plane fit to the data of Fig. 2. 

0 2 
h00 

Fig. 3. Experimental neutron scattering pattem in the (hkO) plane from 
D20 ice Ih at 20 K. 

12 

0 

o 2 4 6 
hO0 

Fig. 5. Scattering in the (h0/) plane, calculated from RMCX 
configurations obtained by fitting only to the (Okl) plane. 
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Table 1. Mean square displacements obtained from the different fits (/~2) 
(u~)t~ 1 gives the mean square displacement in direction [xyz] for species j, calculated as described in the text. The statistical variation in the last 
decimal place is given in parentheses. 

Five-plane Three-plane One-plane Equal size No low Q No high Q 

(u~)[~oo I 0.0154 (12) 0.0133 (7) 0.0104 (12) 0.0124 (3) 0.0092 (7) 0.0132 (8) 
(u~)tmOl 0.0119 (9) 0.0100 (7) 0.0073 (6) 0.0101 (5) 0.0061 (3) 0.0084 (6) 
(U2o}[00,1 0.0132 (5) 0.0109 (7) 0.0080 (8) 0.0112 (8) 0.0065 (4) 0.0086 (7) 
(u~)i~oo I 0.0138 (5) 0.0120 (6) 0.0098 (5) 0.0126 (8) 0.0087 (5) 0.0119 (3) 
(u20)lOlOl 0.0119 (8) 0.0104 (7) 0.0077 (4) 0.0112 (3) 0.0064 (5) 0.0088 (4) 
(U20)10011 0.0132 (7) 0.0107 (5) 0.0082 (4) 0.0107 (6) 0.0067 (2) 0.0084 (3) 

and pointing in the required direction. The tube radius 
was taken as 0. la, a compromise between high resolution 
and good statistics. The values given in Table 1 are 
averages over all relevant atoms in the eight statistically 
independent configurations. For comparison, equivalent 
values obtained for oxygen from Bragg scattering 
analysis are 0.00862(4) along [001] and 0.00849(3) 
perpendicular to [001] (Kuhs & Lehmann, 1987). It is 
immediately apparent that the mean square displace- 
ments are greater than those from Bragg analysis and are 
larger for the fits to larger Q ranges of data. If Bragg 
scattering was fitted at the same time as the diffuse 
scattering, it would constrain the mean square displace- 
ments and so the values would be more realistic. In the 
present case, no account was taken of experimental 
resolution and so the static diffuse scattering was 
broadened, an effect similar to that due to increased 
thermal vibrations. This, combined with the fact that 
RMC algorithms tend to maximize with configurational 
entropy, within the constraints imposed by the data, leads 
to an increase in the disorder of the atomic arrangements 
in the configuration, and hence to increased mean square 
displacements. However, this does not mean that no 
information on the mean square displacements is 
obtainable from the RMCX. It can be seen from Table 
1 that the trends are the same in all cases, except where 
insufficient high- or low-Q data were used in the 
modelling. 

Accurate mean square displacements in general 
directions arebest obtained from Bragg peak analysis. 
However, the RMCX model can be used to provide 
insight into relative values where averaging over all unit 
cells is not appropriate. For instance, in ice it can give 
information on the mean square displacement of the 
oxygen in directions relative to the two deuterons to 
which it is covalently bonded. It is found, in accord with 
the work of Kuhs & Lehmann (1986, 1987), that the O 
atom moves away from its site along the bisector of the 
molecule in a direction away from the deuterons Of the 
molecule. In an average model, each O atom has four 
neighbouring D sites, each half-occupied, so this type of 
information cannot be obtained. 

Table 2 shows some mean atomic separations from the 
various models. These are reasonably consistent and also 
agree with the results from other sources. The crystal- 
lographic work of Kuhs & Lehmann (1986) using the 
half-hydrogen model with the harmonic approximation 

Table 2. Mean atomic separations (,~) and mean bond 
angles (o)for the different fits 

Subscripts c and o indicate a bond along and oblique to the c axis, 
respectively. O - - O  is the nearest-neighbour O - - O  distance, O - - D  the 
intramolecular covalent bond length and D - - D  the intramolecular 
D - - D  distance. O - - O - - O  is the mean angle between three 
neighbouring O atoms and D - - O - - D  the intramolecular angle. The 
final column gives the distances and angles from the five-plane fit 
calculated from the mean sites in the unit cell. The figures in 
parentheses are the statistical variations in the last decimal place. 

Five-plane 
Five-plane Three-plane One-plane Equal size (intersite) 

(O--O) c 2.743 (6) 2.747 (7) 2.742 (8) 2.745 (5) 2.733 (4) 
(O--O) o 2.768 (2) 2.765 (3) 2.764 (2) 2.766 (2) 2.758 (7) 
(O--D)c 0.987 (7) 0.990 (7) 0.987 (5) 0.981 (4) 0.970 (3) 
(O--D) o 0.999 (2) 0.998 (2) 0.994 (2) 0.997 (3) 0.978 (12) 
(D--D)c 1.579 (8) 1.580 (5) 1.576 (5) 1.597 (5) 1.594 (8) 
(D--D) o 1.577 (11) 1.579 (4) 1.576 (2) 1.602 (7) 1.593 (19) 
O- -O--O 109.3 (1) 109.3 (1) 109.3 (1) 109.3 (1) 109.5 (5) 
D- -O--D 105.8 (3) 105.8 (7) 105.8 (7) 108.3 (12) 109.5 (20) 

produced a value of close to 1.0A for the O - - D  
intramolecular distance compared with the RMCX mean 
value of 0.995 ,~ at 20 K (errors can be read from Table 
2). From NMR studies, the D - - D  intramolecular 
distance is 1.58 (2)A (Whalley, 1974), which compares 
very well with the RMCX value of 1.58(1)A. The 
D - - D  distances from the different fits are not entirely 
consistent, with the value from the equal-size fit in 
particular being rather high. The reason for this is not yet 
understood but may relate to the different spacing of the 
data along some directions in this fit. In particular, it may 
be related to fine features in the (hOl) plane. However, 
the general agreement is very encouraging. 

It can be seen in Table 2 that the values of the 
interatomic spacings along and oblique to the c axis are 
different. However, the ratio of these values depends 
critically on the c/a ratio. This points to the need to use 
accurate lattice-parameter values. Some mean bond- 
angle values are given in Table 2. These are consistent 
except for the D - - O - - D  angle from the equal-plane fit, 
this being related to the D - - D  difference discussed 
previously. The values obtained in all cases for this 
intramolecular water angle are in agreement with the 
value of 107 (1) ° obtained from Bragg analysis for ice lh 
(Kuhs & Lehmann, 1987). 

The mean sites calculated after superimposing all the 
unit cells from the five-plane fit (using 20 rather than 
eight configurations to improve statistics) were used to 
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determine mean intersite distances and angles, and these 
are given in the final column of Table 2. Comparison 
with the second column illustrates the difference between 
the distances and angles calculated from the average sites 
and the mean values obtained direct from the configura- 
tion. This difference is large in a material such as ice, 
which has much static disorder. RMCX has the 
advantage over most techniques of providing both the 
actual distributions of interatomic separations and bond 
angles, and the values obtained from the average site 
positions. 

7. Concluding remarks 

The newly developed single-crystal reverse Monte Carlo 
technique (RMCX) is able to produce structural models 
by fitting solely to neutron single-crystal diffuse scatter- 
ing. The technique is generally applicable and can be 
used to provide a large amount of information about the 
system under study. It is especially useful for investigat- 
ing the local arrangements in systems with static 
disorder, where Bragg analysis is only able to determine 
average structural properties. 

In a study on ice lh, in which the D atoms are 
disordered, it was found that the structure produced by 
the RMCX agreed well with data from other techniques, 
although as no Bragg intensities are included at present, 
mean square displacements are not accurately deter- 
mined. RMCX allowed a large amount of new informa- 
tion to be obtained from the diffuse scattering, especially 
concerning the effects of the deuteron disorder. The 
structure of ice is discussed in detail in Nield & 
Whitworth (1995). Future developments of the code will 
include simultaneous modelling of single crystal and 
powder diffraction data, the modelling of diffuse 
scattering in non-principal reciprocal-lattice planes and 
simultaneous modelling of single-crystal Bragg and 
diffuse scattering, a preliminary account of which is 
described in the Appendix. 

The authors would like to thank M. A. Howe for vast 
improvements to the RMC codes and the SERC for 
grants that supported one of us (VMN) and provided the 
workstation used. Many thanks also go to J.-C. Li, who 
measured the experimental data used in this study, and to 
R. W. Whitworth and D. K. Ross for useful discussions. 

APPENDIX 
Modelling both diffuse and Bragg scattering 

simultaneously 

Ideally, both Bragg and diffuse scattering from single 
crystals should be analysed simultaneously, as they are in 
RMC studies of powder diffraction data (Nield, Keen, 
Hayes & McGreevy, 1992, 1993). This has now been 
achieved with RMCX in some preliminary work on lead 
at room temperature. The diffuse scattering was corrected 

and normalized as indicated in §3. The integrated Bragg 
intensities were extracted separately from the data and 
corrections made for extinction, which may be a serious 
problem because of the size of the crystals normally used 
in diffuse scattering studies (ca 1 cm3). The Bragg 
intensities were then normalized by dividing by the sum 

o 2 4 S 

hhO 
(a) 

Fig. 6. The (hhl) plane of lead at 293 K: (a) experimental neutron 
scattering pattern; (b) RMCX fit. The contour levels in these two 
figures are equally spaced between 0.0 and 2.0, with darker shading 
corresponding to higher values. 
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of all such intensities to be used in modelling. Only 37 
independent peaks in the same plane as the diffuse 
scattering were used in .this preliminary work. The 
RMCX algorithm was essentially unchanged, but two 
goodness-of-fit parameters were calculated, one for 
Bragg and one for diffuse scattering, and these were 
then added with a scaling factor ~, such that 

~otal = X~ff~ + ]TRw. (A 1) 

2 Xdiff~ is given by equation (4) of the main text, whilst 
the weighted R factor, R w, used for Bragg scattering is 
defmed by 

. . :  {m ' } 

In this expression, I e (Qm) is the normalized experimental 
integrated intensity of the ruth Bragg peak and I c (Qm) its 
calculated counterpart, o-e(Qm) is the corresponding 
experimental error. To fit both types of data well it was 
necessary initially to make the scaling factor ¢1 very 
large, so that a very good fit to the Bragg scattering was 
obtained (R w of the order 10-4)./~ was then decreased in 
stages, with convergence achieved at each stage. It is 
hence a very computationally expensive procedure. 

Fig. 6 shows the experimental diffuse scattering from 
SXD for lead at 293 K, together with the RMCX fit. The 
agreement is good considering the poor statistics and 
large systematic errors in the data. (The systematic errors 
arose largely because the measurement was made with a 
small position-sensitive detector and the exact sample 
angle for each detector position is not known so that the 
joining of different segments of data could not be done 
with sufficient accuracy.) Good agreement was also 
obtained with the Bragg intensities, with a weighted R 

factor of 0.05, close to the 0.03 obtained by refinement of 
the Bragg peaks alone. The mean square displacements 
in the two cases were also in reasonable agreement, with 
a value of 0.029(3)J, 2 in the present study and 
0.024 (1)~t 2 from analysis solely of the Bragg intensities. 
This gives encouragement that Bragg and diffuse 
scattering can be fitted simultaneously. Work on 
optimizing the algorithm is continuing. 
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Abstract 
X-ray diffraction patterns from some polycrystalline 
fibers show that the constituent microcrystallites are 
disordered. The relationship between the crystal structure 
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and the diffracted intensities is then quite complicated 
and depends on the precise kind and degree of dis- 
order present. The effects of disorder on diffracted 
intensities must be included in structure determinations 
using diffraction data from such specimens. Theory 
and algorithms are developed here that allow the full 
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